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Passing to the limit in (5.7) as n— oo, we obtain the estimates (4.4) with const = 4,,
which completes the proof of the method of two-scale expansions.

The extension of the results of this paper to the case when I'=(', I3, ..., I"), s>1, is
trivial. For the multifrequency case ¢ = (¢, ¢% ..., ¢%), s>1 there is no such simple
and complete theory as in the case of s =1.

The authors thank A.M.Il'in for pointing out the method of eliminating the remainder terms
when proving the theorem.
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ON THE CONDITIONS FOR THE EXISTENCE OF THE REDUCING CHAPLYGIN FACTOR”

IL. ILIYEV

The problem of the existence of a reducing Chaplygin factor (RCF) for
non-holonomic systems with k¥ degrees of freedom is discussed. By
introducing additional ccordinates, a class of non-holonomic systems for
which the RCF method is applicable in a widened configquration space is
distinguished. For comparison, the corresponding conditions in quasi-
coordinates are given. The existence of an RCF for one of the equivalent
non-holonomic systems is studied.

1. Formulation of the problem. s.A. Chaplygin formulated the conditions under
which non-holonomic systems with twe degrees of fredowm can have a reducing factor (see /1/).
Using the equations in admissible vectors, Chaplygir's ideas were extended to systems which
have k degrees of freedom, /2/. The present paper continues the investigations initiated
in /2/.

Let us recall from /2/ some cf the eguations necessary for our discussion. We assume

for brevity that the indices A, u, v.%, 0, ... take values from 1 to n; a, b. c.d from 1 to k;
and p.g.r,... from k to n.
By means of
div = N (¢") du (1.1)
the equations of moticn of a non~hclonomic system in admissible vectors,
d ;&8 o8, 8l
—_— —_— - 7o bo € =
dt !\ bt ag™ * S peht= dg* %" (1.2)
is changed to the form
4 rée® N _ 68) ., 8 »
dt l\ ¢’@ (,) o> x0= 69" g (13)
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(20 = Gus's = N%Gous”s® = 2 (8), Ggp = gipatg ayh)

The coefficients g,, are determined from the expressions for the kinetic energy T =
Vo8.uq7¢, and the force function is denoted by U (¢").

2. The RCF method for a non-holonomic system with &

degrees of freedom.
The admissible vectors have the form

o (100 0.0, ot oL o™ 2.1
2 (001, 000, wil L e
a; (0. 0 1, @h! v o)
wnere @, (¢) are determined from the constraint eguation
g7 = @, fq (2.2
With the above assumptions, Egs. (1.3) can be presented in the form of the Lagrange
egquations
d ¢ m
Le _eh (23)
T4 og og
The conditions for the existence of an RCF for a system with k degrees of freedom is
6In N 6la N
My o= oG, — 228 o6, (2.4)
qu 6q 3
dln ) ; x
-2 ~— %"Gm - ‘Qa. o= U
ag
Qn. L = F( b T Fr, kn 77 r! I rb [
ozt )
r»".. o= r/ M\quzabua(‘\ - g/uual 69‘ fx“\
As a conseguence we obtain from thex the eguations
In N ; ! a o,
(= k)i = Q (25)
P 2
b
Qy = Q. 6"

For k = 2, the number of Ecs, (Z.4) andéd (2.Z, 1= the same: there are twc (this case was
considered by Chaplygin

in).

Theorem 1. By changing the variables g == j‘(f), deti; 4, 15« 0, the objects Il , . are
transformed in accordance with the rule
Mov=TL . 4,74, "CF
(4" =06q"0y . A = o0g¢" 05"

By a direct check we Can estaklish th

Tris proves the thecrem,

Corollary. 1f a system with k degrees of freedom allows of the existence of an RCF,
that is, if it satisfies the condition 11 ,. = (, then after a change of variables we obtain
1T, o =0, ané therefore the RCT cf this system ir the new variables is N (™).

Let us put A" =T..". From the formulae transforming

A%, using the above change of
variables we obtain

A= AL A0 A — AT
99
Hence it fcllows that A, determine the affine connectivity in the space with torsion
S.f =1, (ALY — \). (see /3/). Using the results obtained in /3/, and the formulae
oG, 24
VuGb(——_ Q:‘E = - f/r - -\:bclc_ ‘\‘A‘G‘u!‘ - :C = rb e T Te ar
g dq

we can write (2.4) andé (2.5) as follows:
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V.G = V. In NG, = ¥, In NG, — 2V, In NG, 2.8
=k T, In N =1,0, 2.7)

o~ -,
]
—

On differentiating (2.6), and alternating the indices d and a, after a few operations
we obtain
?dvaG:c —- Y'cx‘\.'d(”bc = O
Dgape = TaV IB NG = TV In NG, — 2%,V In NG, ~

TV In NGy — T,V In NGy +— 2V, ¥4 In NG, +

T DN In NGy < T, In NV, In NGy —~ Ve In NV In MG, —

v, In AT InAG,.
HBence it follows that

—_ RgabGeg - Réachp - 25‘§DVEGM~:.~ d)dabc

After performing the convolution of both sides of the above egualities with G¥ , we

have
IR == 2~ BYT N I N — T,V In M)+ 2559, (2.8}

On differentiating (2.7) we find
20— RV In N — TV In A) == V0, —~ V.0
The conditions for system (2.7) to be integrable can also be written in the form
- 28,0, =V, — V.
Substituting them intec (2.8), we have
Ryy=0 (2.9)

These conditions are satisfied when and only when system (2.7) is integrable. The Riemann-
Christoffel tensor is found from the formula

aAd aAd

g ;

Habc‘ R N abc -~ ____-:c et Agp\;* — J\g(- .:c (2.1(')
og og

Thus we have proved the following theorems.

Theorem 2. For k = 2 the necessary and sufficient invariant conditions for an RCF to
exist are conditions (2.9).
When k> 2, only conditions (2.9]) are necessary.

Theorem 3. For k> 2, the necessary and sufficient conditions for the existence of an
RCF is the simultaneous satisfaction of conditions (2,9) and the following relations:

2(1 "‘"I")Qa,bczQCGcb + G = 22,6, (2.11)

where , is the gradient vector determined from (2.7), whose existence is ensured by the
satisfaction of conditions (2.9}.

Let us replace the system of admissible vectors a,* by the system % = 7,%2* when
det || v.°1l 5= 0. Using the results obtained in /2/, after some reduction we obtain

a b v
Ha', [ Hc. bc'&'c‘?b'}'c'c - Yo bt

I ) P v . o
Ya’, b'c’=Gbc't'c"[‘5q_x"aak?c'— e aax\'b']‘“cbc'\'b’( PR R g — P aau'}’cﬂ} (2.12)
Assuming that the system has an RCF, that is I, . = 0, we find
Mo ve=Ya ber (2.13)

Conditions (2.13) are referred to as the conditions for the existence of an RCF in the
guasicoordinates (see /4, 5/). It was established in /5/ that for kX = 2 the conditions derived
in /4/ are incorrect. The ccrrect conditions, obtained in /5/, are identical with (2.13).

It is clear from (2.12) that a case exists where Ilp g =0 although I, 5 0. After the
change fq* = y.%a,*, the admissible vectors f,*, are not of the form (2,1).

Example. Consider a dynamic non-holonomic system with three degrees of freedom, whose
double kinetic energy and the constraint equations have the form
27 = (g1 o+ (@D (@92 + (g9 + (0%
gt=gliggl, gt=g%tg g
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and there are no outer active forces.
On substituting the expressions for g¢¢ and ¢* into 27, we obtain

20 = (g2 + (g™ + (9'%)%) cos 2¢*
We can satisfy ourselves that

Q20 = Q.33 = 2 sin g'/eos®@)} Q, 1, = Qg9 = — sin gV cos ¢!

The remaining gquantities Qg ;. are zerc. From (2.5) we find Q;,=4mg¢,, Q.= Q;=0, N = cos g
The conditions (2.11) are satisfied, therefore the function N = cosg' is an RCF of the system.

3. The RCF method in a widened configuration space. Let the vectors f,*,
after the change, have the following form:

B (1,0, ..., 0, 0l o ... o™, ..., Br (0,0, .. (3.1)
oL ol o Buany (0,0, .44, 0, olfhy, afhy, . .
L @g-y) + - -3 P (0,0, .., 0, ot ok? L o)

From the relations above we see that ¢',¢% ..., ¢ (0 < l< k) are coordinates. We widen
the configuraticn space (see /6/) by introducing the auxiliary coordinates a1, ..., =n*,
assume that gU' =¢', ..., ¢ =¢, gtV =a1, ... ¢"=nrf g =gu . g0 = g ang
and introduce the notation 27 = gu;q"¢? (', =1,2,....,n— 1+ k). We have supposed up
to now that g, o and U are functions of the coordinates ¢, g%, ..., g", Here and below we
shall require that these functions depend on ¢*, ¢%, ..., q' only. In the notation of the
admissible vectors

a (1,0, .. 0, o . o™, @ (0,1, ..., 0,651, ... (3.9
Ly ) e (0,0, L el L e
the coordinates which occupy places from I — 1 to k correspond to the variables a1, ..., =F.

In the widened (n — I -+ k)-dimensicnal space the admissible vectors (3.2) are already of the
form (2.1).
The equations of motion of a non-holonomic system in this space are (see /7/):

¢ oL el ) o .
(o =0 =T U 3.3)
gi=ualge (3.4)
If osg* = is an equaticr of a certain non-holonomic connectedness of the initial
system (1.2), then o, e, =0 and ,/p.* = 0. By (3.3), all terms for which j'=1-+1,.. .k,
are identically zero. Hence
d oL aL ¥ , -
e A I - oy | — T -
(& P aqy_)ﬁa =0, L=T-U (3.5)
If we take from (3.4) all equations except those with numbers j' =1+ 1. ..., k, we obtain
g =Prg =yiarg" (3.6
Taking the ccnvoluticn of bcth sides with respect to w,”, we arrive at the expression
UJ%; q',‘ — (l (3'—;)
Obviously, Egs.(3.3), (3.4) are equivalent to (3.5), (3.7), and, in addition, to the

{
k — | equations which are linear with respect to the derivatives of the coordinates. The
last equations set k — | additicnal non-holonomic constraints

Q5" =0, e=n+1, ..., n=-k—=1 (3.8)
Egs.(3.5), (3.7) define the motions of the output system (1.2).
The conditions for the existernce of an RCF for the Egs.(3.3), (3.4},
- 5 P ‘\' 5, a A' '’
-il-—nL ac'J Gc'l' — d’]n” ab’J Gu'c' —2 ,]n'- afl'Gb’c‘ == Qa'. ve (39)
ag’ aq’ 2

can be obtained as irn /2/, by operating in the widened configuration space. The difference
is that the rank | g-; |l = n. since the row and column elements of this matrix, with numbers
from | — 1 to k, eguals zero.

The problem cf finding the reducing factor N (¢'. .. .. gl L a') is equivalent tc
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that discussed in /2/, the difference being that the matrix |j g, || degenerates. The equations
for determining the RCF,

=k 2B = 0 m=1.2] (3.10)
q

(1--1;)1‘;—;”——_-%95. s=l-1,... .k
i

are obtained from the findings of /2/. It is desirable if possible to integrate Egs. (3.10)

’
and to satisfy conditions (3.9) since this will ensure that the RCF N (¢', R T L ST L)
is found.
Considering the above assumption, we write Egs.(l.3) in a widened configuration space as

follows:

4 "(9’?)_5_(91= U =1, 2....,1 (3.11)

dT aqm 6qm aqm

L (L8 )_____a(e.') =0, s=1+1,....k (3.12)

dr | an on

26' — Ga,b,s.a's.b' — AVZGa'b'S'a‘SIb’ — 2 (e')

=gt ..., =gl s =nil ¢ =a"

In obtaining (3.11) and (3.12) we use the fact that g, o,” and U are functions of g ¢4,
..,ﬁ only. Requirements of this kind are met in /4/. As was noted in /5/, they lead to false
conclusions since quasicoordinates were used in /4/. If the discussion is conducted in a
widened configuration space, a class of non-holonomic systems for which the RCF method is
applicable can be selected.

The non~holonomic system discussed can be replaced by an equivalent non-degenerate system
(see /8,9/). It will have the Lagrangian

LF =L —1/,8,Q,5Q,7qg"7 (3.13)

where 8, are Kronecker deltas. The system is subject to non-heolonomic constraints (3.7) and
(3.8). According to /8,9/, in this case neither the equations of motion in the admissible
vectors nor conditions (3.9) will vary.

Theorems 2 and 3 will then be formulated as follows.

Theorem 4. For k =2, the necessary and sufficient invariant conditions for the
existence of an RCF in a widened configuration space are

Rizp =0 (3.14)

Theorem 5. For k> 2, the necessary and sufficient conditions for the existence of an
RCF in a widened configuraticn space are expressiocns (3.14) and (3.9).
In the process of forming the Riemarn-Christcffel tensor we must use the values of TI..
. . oA - . . < N b q
calculated in the widened configuration space. The connection between R:- and Rge can be

found from the formula .

. ,oayy.
: ALt b : .
To =T vive — v __‘Q_ o e (3.15)
g
(see /7/). BAfter certain operations we have
i N NPT LR ot % 2 .
Rc’b'c = H“.‘]DLV«I"X‘![.! Tr"*{d - Bc’b'c' (31())

Formulae (3.1€) and (Z.13) make it possible to formulate Theorens 2 and 3 in guasi-coordi-
nates.

Theorem 6. For k = 2 the necessary and sufficient conditions for the existence of an
RCF in quasicoordinates are the conditions

Ry =R (3.47)

Theorem 7. For Kk > 2, the necessary and sufficient conditions for the existence of an
RCF in qguasicoordinates are the conditions (3.17) and (2.13).

Generally, R:Qv/q&(L This confirms once more that there is a case where the method is
in applicable in an initial space, but is applicable in a configuration space.

4, The equivalent non-holonomic systems and the problem of the existence
of an RCF. The reduction of the equations of a non-holonomic system to the Lagrange type
of equations, based on Helmholtz's conditions was considered in /10,11/. The reduction was
achieved either indirectly or after a suitable change of the right-hand side of the equations
of motion. Two non-holonomic systems are referred to as equivalent when they have the same
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trajectories on the manifold determined from the constraint equations (see /8,9/). This is
equivalent to the requirement that these systems are subject to the same constraints and
have the same equations of motion which are widened with respect to the highest derivatives

s Thstscm FU. g0 o Pligbge = p*
where g* = a”§" (see /7/). The conditions of equivalence are expressed as follows (/8/)
b= To=IW +TY. F=F" (4.1

Let us consider a non-holonomic system with a Lagrange function L. We denocte by L, ==
L — L, the Lagrange function eguivalent to the non-holonomic system, where

2Ly == By stse = By st P — Gpsbs P IV (4.2)

[ . 5 T, .
st g, sP=wler 0= G0,

In the Chaplygin systems, 8,. 8, and V are functions of ¢* only. The medified conditions
of eguivalence {4.1) (see /9/) are expressed as

IV 0, =458, = 4558, M8, — Mu8,
G"o,, at” 18

acy...._
og™ q
. b
(= (G = 5 ) mo)
og dg

In an equivalent system functions N and G, correspond to N* and Gg* == Gy + 6, , and

s~
o
w

ak

and the coenditions for the existence of an RCF have the form
nARGE, 2 T, In N¥Gr, — 2¥, In N*Gho = {4.4)
2V ,Gre - 250,60 + 255Gy
On substituting (2.10) into (2.9), we obtain
Rip: =0T 0g" — 0T¢, g =0 {4.5)
Cn the other hand,

ing &
2 ,§‘==f“r{ G&}
o9 ag L ‘79

{ aD 86, 7 #lD

Gae 99 ag” 8
(D = det ! Gg i), Therefore, o0, d¢" — 604 65" = 0. Adding this quantity to the right-hand
side of (4.4) we find

Ripem= (T — Th) 09" — 0(Te, — T5.) 9gb =0

Now, taking irto account the first relaticr of {4,1), we formulate the following theorem.

Theorem 8. The necessary condizions for the existence of an RCF for the whole class of
equivalent non-holonomic systems are conditions (2.9} or, correspondingly, (3.14)

Theorems 3, 5 and 7 give the sufficient conditions for the existence of an RCF for the
class of eguivalent nen-hclonomic systems. To find the necessary and sufficient conditions
we must look into the equestion of the compatibility of (4.3) and ({4.4). Let us consider
the sclution of this problem in the case when N* = 1. The Eq.({4.4) has the form

\-netn TR - Y,‘chc <G(c : m) S:u (ng - 8pb) (46}
Using (4.6) we eliminate V.8, from the first eguation of (4.3). This yields
2rcGab - 2 E: (ees e G@':} - zsgc (Geb - Geb) - "‘{;deé' - chrbem' ={) (47}

System (4.6) can be sclved separately. The gquantities which satisfy system {4.6) are
determined from the integrability condition. Eg.(4.7) and the second equation of (4.3), like
the integrability condition, are linear in 6, and 8, and their common solution is
equivalent to the problem stated. It was shown in /11/ that the eguations of motion of a
sphere on a horizontal plane without slip, after a suitable change of thiex right -hand sides
take the form of the Lagrange equations for a holonomic system. Bence it follows that the
reducing factor N* = ! exists (the existence of this example was noted by Chaplygin, in /1/).
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FLOW OF A MULTILAYER IDEAL INCOMPRESSIBLE AND HEAVY FLUID PAST A BODY*

K.A. BEZHANOV and A.M. TER-KRIKOROV

The two-dimensional steady flow cf a layered fluid past a body with
discontinuous stratification is disucssed. The number of layers in finite,
and the channel which has a horizontal floor is open. To study the flow
behind the body, a hypothesis on the possibility of approximating the
velocity profile at the body boundary by that which arises in weightless
flow (see /1,2/) is postulated. A boundary value problem for a second-
order elliptic equation in combined Euler-Lagrange variables is formulated.
The problem is formulated in a rectilinear band with a separation, and
under the conditions of consistency, on a finite number of parallel

straight lines which correspond to the separation boundary. The introduction
of a measure which gives rise to a monotonic density distribution in a
non~perturbed flow, makes it possible tc reduce the boundary value problem
to the symmetrization of Fredholm-type kernels. The linearized equation

is solved by Fourier methods.

The results cbtained in /3/ are amplified: it is shown that for any
specified Froude number, the corresponding homogeneous integral equation
has only a finite number of positive eigenvalues to which the oscillation
modes correspond. It is alsc shown that if the flow velocity is close to
one of a denumerable set of propagation velocities of long~wave modes,
the corresponding harmonic becomes stronger because of the resonance.

1, Formulation of the problem. cConsider the two-dimensional steady flow of an
ideal incompressible heavy stratified fluid past a body Te: (121, y_(2) <y <y, (7)), where
¥, (z) and y_{(z) are known functions which define the body shape. The Or axis is directed aleng
the horizontal floor of the channel, and the Oy axis runs vertically upwards (see the
figure). At the boundaries yy (x) of the layer T,, the density p and the tangential
component of the velocity V suffer a discontinuity, and the pressure p and the normal
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