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Passing to the limit in (5.7) as n-tot, we obtain the estimates (4.4) with const = A,, 
which completes the proof of the method of two-scale expansions. 

The extension of the results of this paper to the case when I=(I1,Is,...,I'), s> 1, is 
trivial. For the multifrequency case m = (cp*, (p*,...,@), s> 1 there is no such simple 
and complete theory as inthe case of s - 1. 

The authors thank A.M.Il'in for pointing out the method of eliminating the remainder terms 
when proving the theorem. 
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ON THE CONDITIONS FOR THE EXISTENCE OF THE REDUC ING CHAPLYGIN FACTOR* 

IS. ILIYEV 

The problem of the existence of a reducing Chaplygin factor (RCF) for 
non-holonomic systems with ii degrees of freedom is discussed. By 
introducing additional coordinates, a class of non-holonomic systems for 
which the RCF method is applicable in a widened configuration space is 
distinguished. For comparison, the corresponding conditions in quasi- 
coordinates are given. The existence of an RCF for one of the equivalent 
non-holonomic systems is studied. 

1. Formulation of the problem. S.A. Chaplygin formulated the conditions under 
which non-holonomic systems with two degrees of fredom can have a reducing factor (see /l/j. 
Using the equations in admissible vectors, Chaplygin's ideas were extended to systems which 
have k degrees of freedom, /i/. The present paper continues the investigations initiated 
in /2/. 

Let us recall from /2/ some cf the equations necessary for our discussion. We assume 
for brevity that the indices h, p. r.%, p. . . . take values from 1 to n; a, b. c.d from 1 to k; 
and p. q. r, . . . from k to n. 

By means of 

dT = .I' (9’) df, 

the equations of motion of a non-hclononic system in admissible vectors, 

is changedtothe form 

(1.1) 

(1.2) 

(1.3) 

l Prikl.&tem.Meki;an.,49,3,384-391,19@5 
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(Xl = G,b~"~'L = ~Y*G&"s'~ = 2 (e), G, = gi,,czo;.abil) 

The coefficients g are determined fromthe expressions for the kinetic energy T z= 

'~,&?fi,p"P'~, and the force'ufunction is denoted by 1; (q"). 

2. The RCF method for a non-holonomic system with k degrees of freedom. 
The admissible vectors have the form 

CL, (1. 0. ci, col~'l. . cdln) (2.1) 
CL2 (0. 1, .' 0. w:1-1. .( O?") 
. . . . . . . . . . . . . . . . . 
CLI; (0. 0. . 1, i&i-l, .( o,li) 

wnere oai; (9") are determined from the constraint equation 

q i, = to,,h'q u 

With the above assumptions, Eqs.(1.3) can be presented in the form of the Lagrange 
equations 

(2.2) 

The conditions for the existence of an RCF for a system with k degrees of freedom is 

n 
6 Inn; 

utr=- 
ahx aYG 

69X 
a,~G,,r - ag" b 0~ 

(2.4, 

a In.1 
_ 2 - z,"G 

69" 
br - 11, bC = i' 

Q, !,. = rr ,!! - rc,*, -l-t ,: - rb cr 

As a consequence we obrai:. from them zhe equatlcns 

For k=2, the n.Xber cf kqs. T.4) and (2.5) 1-c the same: there are twc (this case was 
considered by Chaplygin!. 

T.$eoren 1. 18y char,glng the variables q' == q' (q"), det _d.' ,I F 0, the otlects JJ, 1c are 
transformed 1:i accordance with the r.uie 

n a.?. = Jl t .-I ".-I, Y- .' 

(2 p = /iq’: c’y ,.I,' =oq' oq') 

By a direct che& we can establrsh that 

This proves the thecrem. 

Coroliarg. If a system with k degrees of freedom allows of the existence of an RCF, 
that is, if it saticfrec the condition Il.,, = (1, then after a change of variables we obtain 

II t. C. = (.I. ax therefore the RCF cf this system in the new variables is ??- (4"). 

Let us put _Ir:" = r,,". From the formulae transforming .jcca , using the above change of 
variables we obtain 

Hence it follows tna'_ _jc" determine the affine connectivity in the space with torsion 
S,.'! = ' 2 (.I,," - .\:,;'I. iSee /3j';. Using the results obtained in /3/, and the formulae 

we can write (2.4) and (2.5~ as follows: 
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‘COG,,, = Ye In IVG.e, .A tG In NG, - 8, 1x1 MC,, (2.6) 

(1 - k)Ta InK = ' *cl. 
(1.7) 

On differentiating (2.6), and alternating the indices d and a, after a few operations 

we obtain 

'i,.J,G:, - T‘,rdG,, = @ 
CD d,bt= r,r, in,VG,, T t,t-, III EjG,,- 2tdto In /VG*, - 

t,t',ln .VGd, - rotb~nn:GdcT 2C,rd fn A’G,, + 
~~~~~t~ji).~G~~ - t,inii't,in,~~~,--t~ inh'ti,In Gob- 

Tb In AT, In A-G,,, 

Hence it follows that 

- &bG,c- RIdo& - 2S:,t’,G,,= @dobr 
both sides of the above equalities with G"C I we After performing the convolution of 

have 

On differentiating (2.7) we find 

2 (1 - k)(TdTa fn It’- Tatd In .V) = T,$ - P&j 

The conditions for system (2.7) to be integrable can also be written in the form 

- ?s:,n,= T'dQ - t‘,Qj 

substituting them into (2.8!, we have 

fi&= 0 (2.9) 

These conditions are satisfied when and only when system (2.7) is integrable. The Riemann- 

Christoffel tensor is found from the formula 

Il$< =$-a.\,d, 7. n&.1& - :1:,.1:, 
69 *P 

(_7*10) 

Thus we have proved the following theorems. 

Theorem 2. For k = 2 the necessary and sufficient invariant conditions for an R&F to 
exist are conditions (2.9). 

When k>Zt only conditions (2.9: axe necessary. 

Theorem 3. For k>2, the necessary and sufficient conditions for the existence. of an 
RCF is the simultaneous satisfaction of conditions (2.9) and the following relations: 

2(1 -k)~gqbc=~cG,b + 6&G,,-- 2&G,, (2.11) 

kvhere zl, is the gradient vector determined from (2.7~~ whose existence is ensured by the 
satisfaction of conditions (2.9). 

Let us replace the system of admissible vectors aQy by the system f3,,X = ;-e.*~~n when 

det II l‘o,O II # 0. Usinq the results obtained in iii, after same reduction we obtain 

II,,. b'C' 5 17,.bc7.:~P~~l'c.c + %a., t'z' 

(2.12) 

Assuming that the system has an RCF, that is n,,, = 0, we find 

&‘, b’c’ = %a,, b’e’ (2.13) 

Conditions (2.13) are referred to as the conditions for the existence of an RCF in the 
quasicoordinates (see /4, 51). It was established in /5/ that for k = 2 the conditions derived 
in/41 are incorrect. The ccrrect conditions, obtained in /5/, are identical with 12.13). 

It is clear from (2.12) that a case exists where f'i,+w,. - 0 although l&+,*0. After the 
change &P = yoS4aox, the admissible vectors /I,,*, are not of the form (2.1). 

Example. Consider a dynamic non-holonomic system with three degrees of freedom, whose 
double kinetic energy and the constraint equations have the form 

2T S?z (*‘I)? _t (9'38 + ($f'S)Z -L (Q")S + (p'*)Z 
p" sli *'P tg 9'. p.6 = Q'S tg 9' 
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and there are no outer active forces. 
On substituting the expressions for 9" and 9.6 into 2T, we obtain 

28 = (q”)Z + l(q’*y _t (q’y], cm *q1 

We can satisfy ourselves that 

R,,,, = 51, Ss = 2 sin q1/cos3q1? R, 11 = P, 1s = - sin q’/ cos Jq* 

The remaining quantities !&,bc are zero. From (2.5) we find P, = 4Zg gl, Q? = Q, = 0, S = cos ql. 
The conditions (2.11) are satisfied, therefore the function A= ~0~9 1 is an RCF of the system. 

3. The RCF method in a widened configuration space. Let the vectors pa,", 
after the change, have the following form: 

b,.(l, 0, ..,o, 6$‘,&2,. ..,clh.n),..., fil,(O,O,... (3.1) 

( I,&', oi:?, . . .,O1,n), &i*1,, (0, 0, . . 10, &$, &,*, . . . 

, O;I.,,.)S . ..,~~'(o,o,...,o,~~l,~lh:*,...,o~~) 

From the relations above we see that q1,q2, . . ..g'(O< l<k) are coordinates. We widen 
the configuration space (see /6/J by introducing the auxiliary coordinates n’+’ , . . . . d, 

assume eat 41’ = q’, . . .) q” = qI* q[‘*l)’ = xl-l, . . ., qk’ = nk. qWlY = q’+l, . . . . qw+w = q”, and 

and introduce the notation ?T' = g,,j,q”‘q”’ (i’, j’ = 1, 2, . ., n - I + k). We have supposed up 

to now that gk,. mop and L' are functions of the coordinates q’.q2, . . ..qk. Here and below we 
shall require that these functions depend on q’, q*, . . . . q’ only. In the notation of the 
admissible vectors 

al~(1.@.....0.~~',...,o~~"),a1~(@.1,...,0,o~',... 

,o,“). . . . . a,.(O, 0, . . . . 1. 0::'. . . ..o~.~) 
(3.") 

the coordinates which occupy places from I7- 1 to k correspond to the variables &’ , . . ., xk. 
In the widened (n - 1 -L k)-dimensicnal space the admissible vectors (3.2) are already of the 
form (2.1). 

The equations of motion of a non-hoionomic system in this space are (see ./7/j: 

i 
d aL' 

z-T- 
$Ja’6,=o, L’=T’-u (3.3) 

q” = aI_ q’c (3.4) 

If oxPq’” = 0 is an equation of a certair. non-holonomic connectedness of the initial 
system (1.2)) then axPacX = 0 and OXPPO x = (I. By (3.3), all terms for whic‘h j' = 1 -!- 1,. ., k, 

are identically zero. Hence 

If we take from (3.4) all equations except those with numbers j' = l+ 1. . . . . k. we obtain 

q’” = e: 9’“’ = y; ,a,,“q’o (3.1;) 

Taking the ccnvoluticn of bcth sides with respect to wXP, we arrive at the expression 

&$,i 4.x = (I (3.7) 

Obviously, Eqs.!3.3), (3.4) are equivalent to (3.51, _ 
(3.7), and, in addition, to the 

k _ 1 equations which are linear with respect to the cierivatives of the coordinates. The 
last equations set !i - I additional non-holonomic constraints 

Q,.Pq”’ = 0, e=n-‘-1, . . . . n-k-l (3.8) 

Eqs.(3.5), (3.7) define the motions of the output system (1.2). 
The conditions for the existence of an RCF for the Eqs.(3.3), (3.4), 

(3.9) 

can be obtained as in /2/, by operating in the widened configuration space. The difference 
is that the rank Ii g., It = I(. since the row and column elements of this matrix, with numbers 
from l- 1 to k, equals zero. 

The problem of findins the redi?cing factor .Y (91. . . 9'. X'-1. _. n') is equivalent tc 



that discussed in /2/, the difference being that the matrix I)gi,l,II degenerates. The equations 

for determining the RCF, 

(l-k)+=- ; %l* ?n = 1, 2,...,1 (3.10) 

(i--k)+ +,. s=lJ- i,...,k 

are obtained from the findings of /2/. It is desirable if possible to integrate Eqs.(3.10), 
and to satisfy conditions (3.9) since this will ensure that the RCF N(q', . . . . p', n'*'. . . . . n') 
is found. 

Considering the above assumption, we write Eqs.(l.3) in a widened configuration space as 
follows: 

d 8 (W 8 (ES) aa 
dTagm. ( 1 

--=-, m=1,2....,1 

+!J!&$=Ol'J=i- *,...,li 

(3.11) 

(3.12) 

2&=G,,b,s.a's.b' = n'S&,.s'O'S'b' = 2(W) 

s" = ql, . . . , . FI’ = q’; s(f-ll’ - - x I’l, , . . , Sk’ = $ 

In obtaining (3.11) and (3.12) we use the fact that gh,,,o, P and U are functions of q’,q’, 
. . ., q1 only. Requirements of this kind are met in /4/. As was noted in /5/, they lead to false 
conclusions since quasicoordinates were used in /4/. If the discussion is conducted in a 
widened configuration space, a class of non-holonomic systems for which the RCF method is 
applicable can be selected. 

The non-holonomic system discussed can be replaced by an equivalent non-degenerate system 
(see /8,9/J. It wili have the Lagrangian 

L* =L - ‘126,,S2,.LR;,“q.I’q.l’ (3.13) 

where hex are Kronecker deltas. The system is subject to non-holonomic constraints (3.7) and 
(3.8). According to /8,9/, in this case neither the equations of motion in the admissible 
vectors nor conditions (3.9) will vary. 

Theorems 2 and 3 will then be formulated as follows. 

Theorem 4. For k = 2, the necessary and sufficient invariant conditions for the 
existence of an RCF in a widened configuration space are 

I?;:,.,. = 0 (3.14) 

Theorem 5. For li>2, the necessary and s'zfflcient conditions for the existence of an 
RCF in a widened configuratisn space are expressions (3.i41 and (3.9). 

In the process of forming the Riemann-Chris tcffel tensor we must use the values of r.:',. 

calculated in the widened configuration space. Tine connection between R,':t.,. and Rik can be 

found from the formula 
r", _ T", P !, 0,' _ y _$ sL r 
< , - cl;' ','b 'iL t 

og" 
c";'r, (3.13) 

(see /7/J. After certain operations we have 

R, b c = Rf,;; -;;'y<.'y;' - R:b'.,. (3.16) 

Formulae (3.16! and (2.13) make it possible to formulate Theorems 2 and 3 in quasi-coordi- 
nates. 

Theorem 6. For li = 2 the necessary and sufficient conditions for the existence of an 
RCF in quasicoordinates are the conditions 

Theorem 7. For k>2, the necessary and sufficient conditions for the existence of an 
RCF in quasicoordinates are the conditions (3.17) and (2.13). 

Generally, Rlyt,, #@. This confirms once more that there is a case where the method is 
in applicable in an initial space, but is applicable in a configuration space. 

4. The equivalent non-holonomic systems and the problem of the existence 
of an RCF. The reduction of the equations of a non-holonomic system to the Lagrange type 
of equations, based on Helmholtz's conditions was considered in /lO,ll/. The reduction was 
achieved either indirectly or after a suitable change of the right-hand side of the equations 
of motion. Two non-holonomic systems are referred to as equivalent when they have the same 



trajectories on the manifold determined from the constraint equations (see /8,9/j. This is 
equivalent to the requirement that these systems are subject to the same constraints and 
have the same equations of motion which are widened with respect to the highest derivatives 

s.'" _!_ r'& Ly.c = F". -s -n + r;is 4c.c = F*" 

where 9 x = o"S" (see /7/j. The conditions of equivalence are expressed as follows (/S/J: 

r& - r$zz r;; _ F;;. F" = & .X? (i.tj 

Let us consider a non-holonomic system with a Lagrange function L. We denote by L, = 
L - L, the Lagrange function equivalent to the non-holonomic system, where 

')L,= 0&S L-C - e*$ %.P - ep&w” - 21’ (4.2) 

” Y 5 0 = w, q , s,p = w,pq y. w;” = GObab%g,;_ 

In the Chaplygin systems, I&. B,, and V are functions oi q” only. The modifiedconditions 
of equivalence (4.1) (see 191) are expressed as 

In an equivalent system functions N and G, correspond to ,v* and G,b* ==&G -!- cob , and 

and the conditions for the existence of an RCF have the form 

rc inx*Gzi L ~~ln.~*G~, - 2yU lJl.v*&= (4.4) 

* b 1 * It,Gt, - 2S;&,, - 2.q:iGPt 

On substituting (2.10) into (2,9), we obtain 

R& z cSI-;t,25q” - X:, irqt = 0 

On the other hand, 

(4.5) 

(D = det ji GdC i!). Therefore, iiTi," 54% - cir,,' tiTb = 0. Adding this quanti ty to the right-hand 
side of (4.4) we find 

No%, taking into account the first relaticr. of (4.11, we formulate the following theorem. 

Theorem 8. The necessary conditions for tl?& existence of an RCF for the whole class of 
equivalent non-holonomic systems are conditions (2.9) or, correspondingly, (3.14). 

Theorems 3, 5 and 7 give the sufficient conditions for the existence of an RCF for the 
class of equivalent ncn-hclonomic systems. To find the necessary and sufficient conditions 
we must look into the equestion of the compatibility of (4.3) and (4.4). Let us consider 
the sclution 05 this problem in the ca5e when .Y* f 1. The Eq.(4.43 has the form 

~A,,= - Y G,, - s:: ; (G,, - e,,, - Sf, (G,, - e,,) (4.6) 

Using (4.6) we eliminate fe@_b from the first equation of (4.31. This yields 

'7r,G,, - .t.(;& (B,! - G,,) T 2S:, (S,, - Geb) - .I~&@, - .13:& =o (4.5) 

System (4.6) can be solved separately. The quantities which satisfy system (4.6) are 

determined from the integrability condition. Eq.(4.7) and the second equation of (4.3), like 
the integrability condition, are linear in %b and f&,, and their common solution is 
equivalent to the problem stated. It was shown in /II/ that the equations af motion of a 
sphere on a horizontal plane without slip, after a suitable change of thier right-hand sides 

t&e the form of the Lagrange equations for a holonomic system. Hence it follows that the 
reducing factor N* = 1 exists (the existence of this example was noted by Chaplygin, in /l/). 
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FLOW OF A MULTILAYER IDEAL INCOMPRESSIBLE AND HEAYY FLUID PAST A BODY* 

K.A. BEZHANOV dnd A.M. TER-KRIKOROV 

The two-dimensional steady flow of a layered fluid past a body with 
discontinuous stratification is disucssed. The number of layers in finite, 
and the channel which has a horizontal floor is open. To study the flow 
behind the body, a hypothesis on the possibility of approximating the 
velocity profile at the body boundary by that which arises in weightless 
flow (see /1,2/j is postulated. A boundary value problem for a second- 
order elliptic equation in combined Euler-Lagrange variables is formulated. 
The problem is formulated in a rectilinear band with a separation, and 
undertheconditions of consistency, on a finite number of parallel 
straight lines which correspond to the separation boundary. The introduction 
of a measure which gives rise to a monotonic density distribution in a 
non-perturbed flow, makes it possible tc reduce the boundary value problem 
to the symmetrization of Fredholm-type kernels. The linearized equation 
is solved by Fourier methods. 

The results obtained in /3/ are amplified: it is shown that for any 
specified Froude number, the corresponding homogeneous integral equation 
has only a finite number of positive eigenvalues to which the oscillation 
modes correspond. It is also shown that if the flow velocity is close to 
one of a denumerable set of propagation velocities of long-wave modes, 
the corresponding harmonic becomes stronger because of the resonance. 

1. Formulation of the problem. Consider the two-dimensional steady flow of an 
ideal incompressible heavy stratified fluid past a body T,: (1 I (< 1, ~J(I)c- y Q y,(r)), where 
y+(r) and y_(x)are known functions which define the body shape. 
the horizontal floor of the channel, and the Oy 

The Or axis is directed along 

figure). At the boundaries Pk (I) of the layer 
axis runs vertically upwards (see the 

T,+# the density p and the tangential 
component of the velocity \‘ suffer a discontinuity, and the pressure p and the normal 
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